Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Chem ; 10: 1063374, 2022.
Article in English | MEDLINE | ID: covidwho-2198678

ABSTRACT

Emergence of the SARS-CoV-2 Omicron variant of concern (VOC; B.1.1.529) resulted in a new peak of the COVID-19 pandemic, which called for development of effective therapeutics against the Omicron VOC. The receptor binding domain (RBD) of the spike protein, which is responsible for recognition and binding of the human ACE2 receptor protein, is a potential drug target. Mutations in receptor binding domain of the S-protein have been postulated to enhance the binding strength of the Omicron VOC to host proteins. In this study, bioinformatic analyses were performed to screen for potential therapeutic compounds targeting the omicron VOC. A total of 92,699 compounds were screened from different libraries based on receptor binding domain of the S-protein via docking and binding free energy analysis, yielding the top 5 best hits. Dynamic simulation trajectory analysis and binding free energy decomposition were used to determine the inhibitory mechanism of candidate molecules by focusing on their interactions with recognized residues on receptor binding domain. The ADMET prediction and DFT calculations were conducted to determine the pharmacokinetic parameters and precise chemical properties of the identified molecules. The molecular properties of the identified molecules and their ability to interfere with recognition of the human ACE2 receptors by receptor binding domain suggest that they are potential therapeutic agents for SARS-CoV-2 Omicron VOC.

2.
JMIR Med Inform ; 8(10): e21628, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-769056

ABSTRACT

BACKGROUND: COVID-19 is a global pandemic that is affecting more than 200 countries worldwide. Efficient diagnosis and treatment are crucial to combat the disease. Computer-interpretable guidelines (CIGs) can aid the broad global adoption of evidence-based diagnosis and treatment knowledge. However, currently, no internationally shareable CIG exists. OBJECTIVE: The aim of this study was to establish a rapid CIG development and dissemination approach and apply it to develop a shareable CIG for COVID-19. METHODS: A 6-step rapid CIG development and dissemination approach was designed and applied. Processes, roles, and deliverable artifacts were specified in this approach to eliminate ambiguities during development of the CIG. The Guideline Definition Language (GDL) was used to capture the clinical rules. A CIG for COVID-19 was developed by translating, interpreting, annotating, extracting, and formalizing the Chinese COVID-19 diagnosis and treatment guideline. A prototype application was implemented to validate the CIG. RESULTS: We used 27 archetypes for the COVID-19 guideline. We developed 18 GDL rules to cover the diagnosis and treatment suggestion algorithms in the narrative guideline. The CIG was further translated to object data model and Drools rules to facilitate its use by people who do not employ the non-openEHR archetype. The prototype application validated the correctness of the CIG with a public data set. Both the GDL rules and Drools rules have been disseminated on GitHub. CONCLUSIONS: Our rapid CIG development and dissemination approach accelerated the pace of COVID-19 CIG development. A validated COVID-19 CIG is now available to the public.

3.
J Med Internet Res ; 22(6): e20239, 2020 06 10.
Article in English | MEDLINE | ID: covidwho-742634

ABSTRACT

BACKGROUND: The coronavirus disease (COVID-19) was discovered in China in December 2019. It has developed into a threatening international public health emergency. With the exception of China, the number of cases continues to increase worldwide. A number of studies about disease diagnosis and treatment have been carried out, and many clinically proven effective results have been achieved. Although information technology can improve the transferring of such knowledge to clinical practice rapidly, data interoperability is still a challenge due to the heterogeneous nature of hospital information systems. This issue becomes even more serious if the knowledge for diagnosis and treatment is updated rapidly as is the case for COVID-19. An open, semantic-sharing, and collaborative-information modeling framework is needed to rapidly develop a shared data model for exchanging data among systems. openEHR is such a framework and is supported by many open software packages that help to promote information sharing and interoperability. OBJECTIVE: This study aims to develop a shared data model based on the openEHR modeling approach to improve the interoperability among systems for the diagnosis and treatment of COVID-19. METHODS: The latest Guideline of COVID-19 Diagnosis and Treatment in China was selected as the knowledge source for modeling. First, the guideline was analyzed and the data items used for diagnosis and treatment, and management were extracted. Second, the data items were classified and further organized into domain concepts with a mind map. Third, searching was executed in the international openEHR Clinical Knowledge Manager (CKM) to find the existing archetypes that could represent the concepts. New archetypes were developed for those concepts that could not be found. Fourth, these archetypes were further organized into a template using Ocean Template Editor. Fifth, a test case of data exchanging between the clinical data repository and clinical decision support system based on the template was conducted to verify the feasibility of the study. RESULTS: A total of 203 data items were extracted from the guideline in China, and 16 domain concepts (16 leaf nodes in the mind map) were organized. There were 22 archetypes used to develop the template for all data items extracted from the guideline. All of them could be found in the CKM and reused directly. The archetypes and templates were reviewed and finally released in a public project within the CKM. The test case showed that the template can facilitate the data exchange and meet the requirements of decision support. CONCLUSIONS: This study has developed the openEHR template for COVID-19 based on the latest guideline from China using openEHR modeling methodology. It represented the capability of the methodology for rapidly modeling and sharing knowledge through reusing the existing archetypes, which is especially useful in a new and fast-changing area such as with COVID-19.


Subject(s)
Coronavirus Infections , Electronic Health Records/standards , Pandemics , Pneumonia, Viral , Practice Guidelines as Topic , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Decision Support Systems, Clinical , Humans , Pneumonia, Viral/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL